Skip to content

vllm.v1.worker.gpu.async_utils

AsyncOutput

Bases: AsyncModelRunnerOutput

Source code in vllm/v1/worker/gpu/async_utils.py
class AsyncOutput(AsyncModelRunnerOutput):
    def __init__(
        self,
        model_runner_output: ModelRunnerOutput,
        sampler_output: SamplerOutput,
        num_sampled_tokens: torch.Tensor,
        copy_stream: torch.cuda.Stream,
        copy_event: torch.cuda.Event,
    ):
        # NOTE(woosuk): We must retain references to the GPU tensors,
        # as the copy operations are performed on a different CUDA stream than
        # the one where the tensors were created.
        self.model_runner_output = model_runner_output
        self.sampler_output = sampler_output
        self.num_sampled_tokens = num_sampled_tokens
        self.copy_stream = copy_stream
        self.copy_event = copy_event

        default_stream = torch.cuda.current_stream()
        with torch.cuda.stream(self.copy_stream):
            self.copy_stream.wait_stream(default_stream)

            self.sampled_token_ids = async_copy_to_np(sampler_output.sampled_token_ids)
            if sampler_output.logprobs_tensors is not None:
                self.logprobs_tensors: LogprobsTensors | None = (
                    sampler_output.logprobs_tensors.to_cpu_nonblocking()
                )
            else:
                self.logprobs_tensors = None
            if sampler_output.num_nans is not None:
                self.num_nans = async_copy_to_np(sampler_output.num_nans)
            else:
                self.num_nans = None
            self.num_sampled_tokens_np = async_copy_to_np(num_sampled_tokens)
            self.prompt_logprobs_dict: dict[str, LogprobsTensors | None] = {}
            if self.model_runner_output.prompt_logprobs_dict:
                for k, v in self.model_runner_output.prompt_logprobs_dict.items():
                    if v is not None:
                        self.prompt_logprobs_dict[k] = v.to_cpu_nonblocking()
                    else:
                        self.prompt_logprobs_dict[k] = None
            self.copy_event.record(self.copy_stream)

    def get_output(self) -> ModelRunnerOutput:
        self.copy_event.synchronize()

        # NOTE(woosuk): The following code is to ensure compatibility with
        # the existing model runner.
        # Going forward, we should keep the data structures as NumPy arrays
        # rather than Python lists.
        sampled_token_ids: list[list[int]] = self.sampled_token_ids.tolist()
        num_reqs = len(sampled_token_ids)
        num_sampled_tokens = self.num_sampled_tokens_np.tolist()
        for i in range(num_reqs):
            del sampled_token_ids[i][num_sampled_tokens[i] :]
        self.model_runner_output.sampled_token_ids = sampled_token_ids

        if self.num_nans is not None:
            num_nans = self.num_nans.tolist()
            self.model_runner_output.num_nans_in_logits = {
                req_id: num_nans[i]
                for i, req_id in enumerate(self.model_runner_output.req_ids)
            }

        if self.logprobs_tensors is not None:
            self.model_runner_output.logprobs = self.logprobs_tensors.tolists()
        self.model_runner_output.prompt_logprobs_dict = self.prompt_logprobs_dict
        return self.model_runner_output

copy_event instance-attribute

copy_event = copy_event

copy_stream instance-attribute

copy_stream = copy_stream

logprobs_tensors instance-attribute

logprobs_tensors: LogprobsTensors | None = (
    to_cpu_nonblocking()
)

model_runner_output instance-attribute

model_runner_output = model_runner_output

num_nans instance-attribute

num_nans = async_copy_to_np(num_nans)

num_sampled_tokens instance-attribute

num_sampled_tokens = num_sampled_tokens

num_sampled_tokens_np instance-attribute

num_sampled_tokens_np = async_copy_to_np(num_sampled_tokens)

prompt_logprobs_dict instance-attribute

prompt_logprobs_dict: dict[str, LogprobsTensors | None] = {}

sampled_token_ids instance-attribute

sampled_token_ids = async_copy_to_np(sampled_token_ids)

sampler_output instance-attribute

sampler_output = sampler_output

__init__

__init__(
    model_runner_output: ModelRunnerOutput,
    sampler_output: SamplerOutput,
    num_sampled_tokens: Tensor,
    copy_stream: Stream,
    copy_event: Event,
)
Source code in vllm/v1/worker/gpu/async_utils.py
def __init__(
    self,
    model_runner_output: ModelRunnerOutput,
    sampler_output: SamplerOutput,
    num_sampled_tokens: torch.Tensor,
    copy_stream: torch.cuda.Stream,
    copy_event: torch.cuda.Event,
):
    # NOTE(woosuk): We must retain references to the GPU tensors,
    # as the copy operations are performed on a different CUDA stream than
    # the one where the tensors were created.
    self.model_runner_output = model_runner_output
    self.sampler_output = sampler_output
    self.num_sampled_tokens = num_sampled_tokens
    self.copy_stream = copy_stream
    self.copy_event = copy_event

    default_stream = torch.cuda.current_stream()
    with torch.cuda.stream(self.copy_stream):
        self.copy_stream.wait_stream(default_stream)

        self.sampled_token_ids = async_copy_to_np(sampler_output.sampled_token_ids)
        if sampler_output.logprobs_tensors is not None:
            self.logprobs_tensors: LogprobsTensors | None = (
                sampler_output.logprobs_tensors.to_cpu_nonblocking()
            )
        else:
            self.logprobs_tensors = None
        if sampler_output.num_nans is not None:
            self.num_nans = async_copy_to_np(sampler_output.num_nans)
        else:
            self.num_nans = None
        self.num_sampled_tokens_np = async_copy_to_np(num_sampled_tokens)
        self.prompt_logprobs_dict: dict[str, LogprobsTensors | None] = {}
        if self.model_runner_output.prompt_logprobs_dict:
            for k, v in self.model_runner_output.prompt_logprobs_dict.items():
                if v is not None:
                    self.prompt_logprobs_dict[k] = v.to_cpu_nonblocking()
                else:
                    self.prompt_logprobs_dict[k] = None
        self.copy_event.record(self.copy_stream)

get_output

get_output() -> ModelRunnerOutput
Source code in vllm/v1/worker/gpu/async_utils.py
def get_output(self) -> ModelRunnerOutput:
    self.copy_event.synchronize()

    # NOTE(woosuk): The following code is to ensure compatibility with
    # the existing model runner.
    # Going forward, we should keep the data structures as NumPy arrays
    # rather than Python lists.
    sampled_token_ids: list[list[int]] = self.sampled_token_ids.tolist()
    num_reqs = len(sampled_token_ids)
    num_sampled_tokens = self.num_sampled_tokens_np.tolist()
    for i in range(num_reqs):
        del sampled_token_ids[i][num_sampled_tokens[i] :]
    self.model_runner_output.sampled_token_ids = sampled_token_ids

    if self.num_nans is not None:
        num_nans = self.num_nans.tolist()
        self.model_runner_output.num_nans_in_logits = {
            req_id: num_nans[i]
            for i, req_id in enumerate(self.model_runner_output.req_ids)
        }

    if self.logprobs_tensors is not None:
        self.model_runner_output.logprobs = self.logprobs_tensors.tolists()
    self.model_runner_output.prompt_logprobs_dict = self.prompt_logprobs_dict
    return self.model_runner_output

async_barrier

async_barrier(event: Event | None)
Source code in vllm/v1/worker/gpu/async_utils.py
@contextmanager
def async_barrier(event: torch.cuda.Event | None):
    if event is not None:
        event.synchronize()
    try:
        yield
    finally:
        if event is not None:
            event.record()

async_copy_to_np

async_copy_to_np(x: Tensor) -> ndarray
Source code in vllm/v1/worker/gpu/async_utils.py
def async_copy_to_np(x: torch.Tensor) -> np.ndarray:
    return x.to("cpu", non_blocking=True).numpy()