Bases: AsyncModelRunnerOutput
Source code in vllm/v1/worker/gpu/async_utils.py
| class AsyncOutput(AsyncModelRunnerOutput):
def __init__(
self,
model_runner_output: ModelRunnerOutput,
sampler_output: SamplerOutput,
num_sampled_tokens: torch.Tensor,
copy_stream: torch.cuda.Stream,
copy_event: torch.cuda.Event,
):
# NOTE(woosuk): We must retain references to the GPU tensors,
# as the copy operations are performed on a different CUDA stream than
# the one where the tensors were created.
self.model_runner_output = model_runner_output
self.sampler_output = sampler_output
self.num_sampled_tokens = num_sampled_tokens
self.copy_stream = copy_stream
self.copy_event = copy_event
default_stream = torch.cuda.current_stream()
with torch.cuda.stream(self.copy_stream):
self.copy_stream.wait_stream(default_stream)
self.sampled_token_ids = async_copy_to_np(sampler_output.sampled_token_ids)
if sampler_output.logprobs_tensors is not None:
self.logprobs_tensors: LogprobsTensors | None = (
sampler_output.logprobs_tensors.to_cpu_nonblocking()
)
else:
self.logprobs_tensors = None
if sampler_output.num_nans is not None:
self.num_nans = async_copy_to_np(sampler_output.num_nans)
else:
self.num_nans = None
self.num_sampled_tokens_np = async_copy_to_np(num_sampled_tokens)
self.prompt_logprobs_dict: dict[str, LogprobsTensors | None] = {}
if self.model_runner_output.prompt_logprobs_dict:
for k, v in self.model_runner_output.prompt_logprobs_dict.items():
if v is not None:
self.prompt_logprobs_dict[k] = v.to_cpu_nonblocking()
else:
self.prompt_logprobs_dict[k] = None
self.copy_event.record(self.copy_stream)
def get_output(self) -> ModelRunnerOutput:
self.copy_event.synchronize()
# NOTE(woosuk): The following code is to ensure compatibility with
# the existing model runner.
# Going forward, we should keep the data structures as NumPy arrays
# rather than Python lists.
sampled_token_ids: list[list[int]] = self.sampled_token_ids.tolist()
num_reqs = len(sampled_token_ids)
num_sampled_tokens = self.num_sampled_tokens_np.tolist()
for i in range(num_reqs):
del sampled_token_ids[i][num_sampled_tokens[i] :]
self.model_runner_output.sampled_token_ids = sampled_token_ids
if self.num_nans is not None:
num_nans = self.num_nans.tolist()
self.model_runner_output.num_nans_in_logits = {
req_id: num_nans[i]
for i, req_id in enumerate(self.model_runner_output.req_ids)
}
if self.logprobs_tensors is not None:
self.model_runner_output.logprobs = self.logprobs_tensors.tolists()
self.model_runner_output.prompt_logprobs_dict = self.prompt_logprobs_dict
return self.model_runner_output
|
copy_event instance-attribute
copy_stream instance-attribute
copy_stream = copy_stream
logprobs_tensors instance-attribute
model_runner_output instance-attribute
model_runner_output = model_runner_output
num_nans instance-attribute
num_sampled_tokens instance-attribute
num_sampled_tokens = num_sampled_tokens
num_sampled_tokens_np instance-attribute
prompt_logprobs_dict instance-attribute
sampled_token_ids instance-attribute
sampler_output instance-attribute
sampler_output = sampler_output
__init__
Source code in vllm/v1/worker/gpu/async_utils.py
| def __init__(
self,
model_runner_output: ModelRunnerOutput,
sampler_output: SamplerOutput,
num_sampled_tokens: torch.Tensor,
copy_stream: torch.cuda.Stream,
copy_event: torch.cuda.Event,
):
# NOTE(woosuk): We must retain references to the GPU tensors,
# as the copy operations are performed on a different CUDA stream than
# the one where the tensors were created.
self.model_runner_output = model_runner_output
self.sampler_output = sampler_output
self.num_sampled_tokens = num_sampled_tokens
self.copy_stream = copy_stream
self.copy_event = copy_event
default_stream = torch.cuda.current_stream()
with torch.cuda.stream(self.copy_stream):
self.copy_stream.wait_stream(default_stream)
self.sampled_token_ids = async_copy_to_np(sampler_output.sampled_token_ids)
if sampler_output.logprobs_tensors is not None:
self.logprobs_tensors: LogprobsTensors | None = (
sampler_output.logprobs_tensors.to_cpu_nonblocking()
)
else:
self.logprobs_tensors = None
if sampler_output.num_nans is not None:
self.num_nans = async_copy_to_np(sampler_output.num_nans)
else:
self.num_nans = None
self.num_sampled_tokens_np = async_copy_to_np(num_sampled_tokens)
self.prompt_logprobs_dict: dict[str, LogprobsTensors | None] = {}
if self.model_runner_output.prompt_logprobs_dict:
for k, v in self.model_runner_output.prompt_logprobs_dict.items():
if v is not None:
self.prompt_logprobs_dict[k] = v.to_cpu_nonblocking()
else:
self.prompt_logprobs_dict[k] = None
self.copy_event.record(self.copy_stream)
|
get_output
Source code in vllm/v1/worker/gpu/async_utils.py
| def get_output(self) -> ModelRunnerOutput:
self.copy_event.synchronize()
# NOTE(woosuk): The following code is to ensure compatibility with
# the existing model runner.
# Going forward, we should keep the data structures as NumPy arrays
# rather than Python lists.
sampled_token_ids: list[list[int]] = self.sampled_token_ids.tolist()
num_reqs = len(sampled_token_ids)
num_sampled_tokens = self.num_sampled_tokens_np.tolist()
for i in range(num_reqs):
del sampled_token_ids[i][num_sampled_tokens[i] :]
self.model_runner_output.sampled_token_ids = sampled_token_ids
if self.num_nans is not None:
num_nans = self.num_nans.tolist()
self.model_runner_output.num_nans_in_logits = {
req_id: num_nans[i]
for i, req_id in enumerate(self.model_runner_output.req_ids)
}
if self.logprobs_tensors is not None:
self.model_runner_output.logprobs = self.logprobs_tensors.tolists()
self.model_runner_output.prompt_logprobs_dict = self.prompt_logprobs_dict
return self.model_runner_output
|